If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y-4y^2=0
a = -4; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·(-4)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*-4}=\frac{-4}{-8} =1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*-4}=\frac{0}{-8} =0 $
| 2a((a+2)(3a-1)-(a+2(a-1)(a+3)))=0 | | (1+1/3)*(1+1/8)=x | | 2x+5+x=53 | | 4x-8-3+15=2x | | 7.33=6.28r | | 2/3x-4=1/2-7 | | -8c+12,4=-5c+7 | | (x+1)(x-2)(x+6)(x-3)=45*x*x | | 5(4s-8)=4(3+2s) | | 1,5y-12=3,8y-12 | | -7+5x=4+9x | | 4(3d+4)=-5 | | 1.3x=2.5+x | | 7x•5xX=10 | | 13-3,5i=4-8i | | 6(g+0,4)-7(g-1)=0 | | 12x2+-36x+32=0 | | 2/3x=3/4=8 | | 31/2-2x=11/4 | | –2.5p–20=9p+37.5 | | x3+12x2+-36x+32=0 | | p=(10–Q)+(1–0.1Q) | | 14x-182=5x-11 | | x^2+3x-1/x+4= | | 4x-182=5x-11 | | x^2+3x-1/x=4 | | 2.5(–3p–8)+5p=4(2.25p+5.5)+15.5 | | 6x/8-4=20 | | e=4e+10 | | 3/2x+6/3=2/4 | | 0.9(x+60)+0.5x=103 | | -16t^2+60t+40=0 |